题目(LeetCode #348)
Design a Tic-tac-toe game that is played between two players on a n x n
grid.
You may assume the following rules:
- A move is guaranteed to be valid and is placed on an empty block.
- Once a winning condition is reached, no more moves is allowed.
- A player who succeeds in placing
n
of their marks in a horizontal, vertical, or diagonal row wins the game.
Example:
Given n = 3, assume that player 1 is “X” and player 2 is “O” in the board.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
| TicTacToe toe = new TicTacToe(3);
toe.move(0, 0, 1); -> Returns 0 (no one wins) |X| | | | | | | | | | |
toe.move(0, 2, 2); -> Returns 0 (no one wins) |X| |O| | | | | | | | |
toe.move(2, 2, 1); -> Returns 0 (no one wins) |X| |O| | | | | | | |X|
toe.move(1, 1, 2); -> Returns 0 (no one wins) |X| |O| | |O| | | | |X|
toe.move(2, 0, 1); -> Returns 0 (no one wins) |X| |O| | |O| | |X| |X|
toe.move(1, 0, 2); -> Returns 0 (no one wins) |X| |O| |O|O| | |X| |X|
toe.move(2, 1, 1); -> Returns 1 (player 1 wins) |X| |O| |O|O| | |X|X|X|
|
Follow up:
Could you do better than O(n²) per move()
operation?
题解
可使用二维数组分别保存两位选手的每一行、每一列和两条对角线上已放置的棋子数。由于每一步都是有效的且放置于空位,因此无需考虑每一行具体如何放置,记录数量即可,当行、列或对角线上的棋子数达到 n
时即有一方获胜。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
| class TicTacToe { private final int[][] rows; private final int[][] cols; private final int[][] diags; private final int n;
public TicTacToe(int n) { rows = new int[2][n]; cols = new int[2][n]; diags = new int[2][2]; this.n = n; }
public int move(int row, int col, int player) { int playerIdx = player - 1;
rows[playerIdx][row]++; if (rows[playerIdx][row] == n) return player;
cols[playerIdx][col]++; if (cols[playerIdx][col] == n) return player;
if (row == col) { diags[playerIdx][0]++; if (diags[playerIdx][0] == n) return player; }
if (row + col == n - 1) { diags[playerIdx][1]++; if (diags[playerIdx][1] == n) return player; }
return 0; } }
|